Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Obstet Gynecol ; 140(2): 195-203, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-2029090

ABSTRACT

OBJECTIVE: To evaluate whether the use of inhaled nitric oxide (iNO)200 improves respiratory function. METHODS: This retrospective cohort study used data from pregnant patients hospitalized with severe bilateral coronavirus disease 2019 (COVID-19) pneumonia at four teaching hospitals between March 2020 and December 2021. Two cohorts were identified: 1) those receiving standard of care alone (SoC cohort) and 2) those receiving iNO200 for 30 minutes twice daily in addition to standard of care alone (iNO200 cohort). Inhaled nitric oxide, as a novel therapy, was offered only at one hospital. The prespecified primary outcome was days free from any oxygen supplementation at 28 days postadmission. Secondary outcomes were hospital length of stay, rate of intubation, and intensive care unit (ICU) length of stay. The multivariable-adjusted regression analyses accounted for age, body mass index, gestational age, use of steroids, remdesivir, and the study center. RESULTS: Seventy-one pregnant patients were hospitalized for severe bilateral COVID-19 pneumonia: 51 in the SoC cohort and 20 in the iNO200 cohort. Patients receiving iNO200 had more oxygen supplementation-free days (iNO200: median [interquartile range], 24 [23-26] days vs standard of care alone: 22 [14-24] days, P=.01) compared with patients in the SoC cohort. In the multivariable-adjusted analyses, iNO200 was associated with 63.2% (95% CI 36.2-95.4%; P<.001) more days free from oxygen supplementation, 59.7% (95% CI 56.0-63.2%; P<.001) shorter ICU length of stay, and 63.6% (95% CI 55.1-70.8%; P<.001) shorter hospital length of stay. No iNO200-related adverse events were reported. CONCLUSION: In pregnant patients with severe bilateral COVID-19 pneumonia, iNO200 was associated with a reduced need for oxygen supplementation and shorter hospital stay.


Subject(s)
COVID-19 Drug Treatment , Female , Humans , Nitric Oxide , Oxygen , Pregnancy , Retrospective Studies , SARS-CoV-2
3.
JMIR Med Educ ; 8(1): e31080, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1775567

ABSTRACT

BACKGROUND: Physical and social distancing recommendations aimed at limiting exposure during the COVID-19 pandemic have forced residency programs to increasingly rely on videoconferencing and web-based resources. OBJECTIVE: In this pilot study, we aimed to explore the effects of the COVID-19 pandemic on residency training experience, and to delineate the perceived barriers to the successful implementation of web-based medical education. METHODS: A 19-item survey was compiled and distributed electronically using Qualtrics. This anonymous survey included information on the training level of each resident, their participation in formal didactics before and during the pandemic, and their perception of the ease and limitations of virtual didactics. The resident's opinions on specific educational resources were assessed, and the effectiveness of new delivery methods on resident engagement and learning was examined. RESULTS: Thirty anesthesiology residents were surveyed, 19 of whom agreed to participate in the pilot study. One participant with incomplete responses was excluded, yielding a final cohort of 18 respondents. Most residents (56%, 10/18) reported that the COVID-19 pandemic negatively affected their residency training. The time spent on didactic training and independent studies was, nevertheless, not affected by the pandemic for 90% (16/18) of respondents. Nonetheless, 72% (13/18) of residents were less engaged during virtual lectures in comparison to in-person didactics. Important limitations included distraction from the physical environment (67%, 12/18), internet instability (67%, 12/18), less obligation to participate (44%, 8/18), technical difficulty and unmuted microphones (33%, 6/18, each), and people speaking over each other (28%, 5/18). Despite these limitations, most residents stated that they would like to keep a combination of virtual didactics including live Zoom lectures (56%, 10/18), prerecorded web didactics (56%, 10/18), and virtual ground rounds via Zoom (50%, 9/18) as the "new normal." CONCLUSIONS: Despite important limitations listed in this report, anesthesia residents would like to keep a combination of virtual lectures and presentations as the new normal after the COVID-19 pandemic.

4.
Crit Care Med ; 49(10): 1739-1748, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1475872

ABSTRACT

OBJECTIVES: The coronavirus disease 2019 pandemic has overwhelmed healthcare resources even in wealthy nations, necessitating rationing of limited resources without previously established crisis standards of care protocols. In Massachusetts, triage guidelines were designed based on acute illness and chronic life-limiting conditions. In this study, we sought to retrospectively validate this protocol to cohorts of critically ill patients from our hospital. DESIGN: We applied our hospital-adopted guidelines, which defined severe and major chronic conditions as those associated with a greater than 50% likelihood of 1- and 5-year mortality, respectively, to a critically ill patient population. We investigated mortality for the same intervals. SETTING: An urban safety-net hospital ICU. PATIENTS: All adults hospitalized during April of 2015 and April 2019 identified through a clinical database search. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 365 admitted patients, 15.89% had one or more defined chronic life-limiting conditions. These patients had higher 1-year (46.55% vs 13.68%; p < 0.01) and 5-year (50.00% vs 17.22%; p < 0.01) mortality rates than those without underlying conditions. Irrespective of classification of disease severity, patients with metastatic cancer, congestive heart failure, end-stage renal disease, and neurodegenerative disease had greater than 50% 1-year mortality, whereas patients with chronic lung disease and cirrhosis had less than 50% 1-year mortality. Observed 1- and 5-year mortality for cirrhosis, heart failure, and metastatic cancer were more variable when subdivided into severe and major categories. CONCLUSIONS: Patients with major and severe chronic medical conditions overall had 46.55% and 50.00% mortality at 1 and 5 years, respectively. However, mortality varied between conditions. Our findings appear to support a crisis standards protocol which focuses on acute illness severity and only considers underlying conditions carrying a greater than 50% predicted likelihood of 1-year mortality. Modifications to the chronic lung disease, congestive heart failure, and cirrhosis criteria should be refined if they are to be included in future models.


Subject(s)
COVID-19/therapy , Crisis Intervention/standards , Resource Allocation/methods , Academic Medical Centers/organization & administration , Academic Medical Centers/statistics & numerical data , Adult , COVID-19/epidemiology , Crisis Intervention/methods , Crisis Intervention/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Male , Massachusetts , Middle Aged , Resource Allocation/statistics & numerical data , Retrospective Studies , Safety-net Providers/organization & administration , Safety-net Providers/statistics & numerical data , Standard of Care/standards , Standard of Care/statistics & numerical data , Urban Population/statistics & numerical data
5.
Neurologist ; 26(5): 196-224, 2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1398198

ABSTRACT

BACKGROUND: Central nervous system complications are reported in an increasing number of patients with Coronavirus Disease 2019 (COVID-19). COVID-19-related Guillain-Barré syndrome (GBS) is of particular importance given its association with higher mortality rates and prolonged respiratory failure. REVIEW SUMMARY: We conducted a systematic review of published cases for COVID-19-related GBS, and provide a summary of clinical management strategies for these cases. Sixty-three studies, including 86 patients, were included. Seventy-six cases with reported outcome data were eligible for the outcome analysis. Ninety-nine percent of patients were diagnosed with COVID-19 before diagnosis of GBS (median: 14 d prior, interquartile range: 7 to 20). Intravenous immunotherapy (intravenous immunoglobulin: 0.4 g/kg/d for 5 d) was the most frequently used treatment approach. The review indicated that the outcome was not favorable in 26% of cases (persistent neurological deficits). A mortality rate of 3.5% was observed in patients with COVID-19-related GBS. CONCLUSIONS: Although evidence to support specific treatments is lacking, clinicians should consider the benefits of immunotherapy and plasma exchange in addition to the standard antimicrobial and supportive therapies for patients who meet the diagnostic criteria for acute sensory and motor polyradiculoneuritis. Intravenous immunoglobulin treatment alone is not shown to result in improved outcomes or mortality. More extensive studies aimed at exploring the neurological manifestations and complications of COVID-19 and distinctive treatment options for COVID-19-related GBS are warranted.


Subject(s)
COVID-19 Drug Treatment , Guillain-Barre Syndrome/drug therapy , Immunoglobulins, Intravenous/therapeutic use , SARS-CoV-2/drug effects , Thyroid Neoplasms/drug therapy , Guillain-Barre Syndrome/diagnosis , Humans , Plasma Exchange/methods , Plasmapheresis/adverse effects , Plasmapheresis/methods
7.
Crit Care Res Pract ; 2021: 6682944, 2021.
Article in English | MEDLINE | ID: covidwho-1247438

ABSTRACT

BACKGROUND: Acute respiratory failure from COVID-19 pneumonia is a major cause of death after SARS-CoV-2 infection. We investigated whether PaO2/FiO2, oxygenation index (OI), SpO2/FiO2, and oxygen saturation index (OSI), commonly used to assess the severity of acute respiratory distress syndrome (ARDS), can predict mortality in mechanically ventilated COVID-19 patients. METHODS: In this single-centered retrospective pilot study, we enrolled 68 critically ill mechanically ventilated adult patients with confirmed COVID-19. Physiological variables were recorded on the day of intubation (day 0) and postintubation days 3 and 7. The association between physiological parameters, PaO2/FiO2, OI, SpO2/FiO2, and OSI with mortality was assessed using multiple variable logistic regression analysis. Receiver operating characteristic analysis was conducted to evaluate the performance of the predictive models. RESULTS: The ARDS severity indices were not statistically different on the day of intubation, suggesting similar baseline conditions in nonsurviving and surviving patients. However, these indices were significantly worse in the nonsurviving as compared to surviving patients on postintubation days 3 and 7. On intubation day 3, PaO2/FiO2 was 101.0 (61.4) in nonsurviving patients vs. 140.2 (109.6) in surviving patients, p=0.004, and on day 7 106.3 (94.2) vs. 178.0 (69.3), p < 0.001. OI was 135.0 (129.7) in nonsurviving vs. 84.8 (86.1) in surviving patients (p=0.003) on day 3 and 150.0 (118.4) vs. 61.5 (46.7) (p < 0.001) on day 7. OSI was 12.0 (11.7) vs. 8.0 (10.0) (p=0.006) on day 3 and 14.7 (13.2) vs. 6.5 (5.4) (p < 0.001) on day 7. Similarly, SpO2/FiO2 was 130 (90) vs. 210 (90) (p=0.003) on day 3 and 130 (90) vs. 230 (50) (p < 0.001) on day 7, while OSI was 12.0 (11.7) vs. 8.0 (10.0) (p=0.006) on day 3 and 14.7 (13.2) vs. 6.5 (5.4) (p < 0.001) on day 7 in the nonsurviving and surviving patients, respectively. All measures were independently associated with hospital mortality, with significantly greater odds ratios observed on day 7. The area under the receiver operating characteristic curve (AUC) for mortality prediction was greatest on intubation day 7 (AUC = 0.775, 0.808, and 0.828 for PaO2/FiO2, OI, SpO2/FiO2, and OSI, respectively). CONCLUSIONS: Decline in oxygenation indices after intubation is predictive of mortality in COVID-19 patients. This time window is critical to the outcome of these patients and a possible target for future interventions. Future large-scale studies to confirm the prognostic value of the indices in COVID-19 patients are warranted.

8.
BMC Anesthesiol ; 21(1): 155, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1238704

ABSTRACT

BACKGROUND: The surge of critically ill patients due to the coronavirus disease-2019 (COVID-19) overwhelmed critical care capacity in areas of northern Italy. Anesthesia machines have been used as alternatives to traditional ICU mechanical ventilators. However, the outcomes for patients with COVID-19 respiratory failure cared for with Anesthesia Machines is currently unknow. We hypothesized that COVID-19 patients receiving care with Anesthesia Machines would have worse outcomes compared to standard practice. METHODS: We designed a retrospective study of patients admitted with a confirmed COVID-19 diagnosis at a large tertiary urban hospital in northern Italy. Two care units were included: a 27-bed standard ICU and a 15-bed temporary unit emergently opened in an operating room setting. Intubated patients assigned to Anesthesia Machines (AM group) were compared to a control cohort treated with standard mechanical ventilators (ICU-VENT group). Outcomes were assessed at 60-day follow-up. A multivariable Cox regression analysis of risk factors between survivors and non-survivors was conducted to determine the adjusted risk of death for patients assigned to AM group. RESULTS: Complete daily data from 89 mechanically ventilated patients consecutively admitted to the two units were analyzed. Seventeen patients were included in the AM group, whereas 72 were in the ICU-VENT group. Disease severity and intensity of treatment were comparable between the two groups. The 60-day mortality was significantly higher in the AM group compared to the ICU-vent group (12/17 vs. 27/72, 70.6% vs. 37.5%, respectively, p = 0.016). Allocation to AM group was associated with a significantly increased risk of death after adjusting for covariates (HR 4.05, 95% CI: 1.75-9.33, p = 0.001). Several incidents and complications were reported with Anesthesia Machine care, raising safety concerns. CONCLUSIONS: Our results support the hypothesis that care associated with the use of Anesthesia Machines is inadequate to provide long-term critical care to patients with COVID-19. Added safety risks must be considered if no other option is available to treat severely ill patients during the ongoing pandemic. CLINICAL TRIAL NUMBER: Not applicable.


Subject(s)
Anesthesiology/instrumentation , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Respiration, Artificial/instrumentation , Aged , Female , Humans , Italy/epidemiology , Male , Middle Aged , Respiration, Artificial/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL